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Introduction (1)Introduction (1)

This paper proposes an extension of the 
classical concept of “linear equivalence” 
between functions.
The concept is applicable to any set of functions 
f: Fp

m ⇒ Fp
n , although probably the most 

interesting case is that of bijective functions (S-
boxes) on Fields with even characteristic.
Early work has been done by Lorens, Harrison, 
Berlekamp, Denev et al. for vectorial Boolean 
functions.



Introduction (2)Introduction (2)

The most general instance of classical linear 
equivalence between two functions 
f, g : Fp

m ⇒ Fp
n is:

g(x) = Bf(Ax) + Cx

The two functions have essentially the same 
non-linear behavior, provided that A and B 
are non-singular matrices over Fp.



Introduction (3)Introduction (3)

The DDTs and LATs of two linearly equivalent 
functions are characterized by the same 
distributions of values.
If they are invertible, then this is also true for 
the inverse functions f-1,g-1 that are 
sometimes quoted to be “cryptographically 
equivalent”.
But, f-1,g-1 are clearly not linearly equivalent to 
f,g! No formal consistency.
Do we need a more general definition? 



A Geometric Representation (1)A Geometric Representation (1)

We can build a geometric representation of 
function f by computing the non-ordered set 
of vectors:

Each vector of the set represents one 
complete row of the truth table of f.

x f(x)

F = {(x|f(x)), x∈Fp
m, f(x)∈Fp

n}



A Geometric Representation (2)A Geometric Representation (2)

Every completely specified function is thus 
associated with a unique implicit embedding 
F in the linear space Fp

m+n.

O

Not all possible sets 
of vectors represent 
functions! For 
instance, the first m
components of all 
vectors must span the 
whole subspace Fp

m.



Generalized Linear Equivalence (1)Generalized Linear Equivalence (1)

If we apply an invertible linear transformation 
of coordinates T to the space Fp

m+n, the
information contained in the set of vectors is 
not changed; we only change the way we are 
geometrically looking at this object, G=T(F).

O

F
O G

⇔
T



Generalized Linear Equivalence (2)Generalized Linear Equivalence (2)

Two functions f,g are generally linearly 
equivalent if G=T(F), where T is governed by 
a non-singular (m+n) × (m+n) matrix over Fp.
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C B

Dy

g(y)
=

x

f(x)
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n

m n



Generalized Linear Equivalence (3)Generalized Linear Equivalence (3)

G.L.E. is an extension of the classical 
equivalence criterion.
If f,g are classically linearly equivalent, they 
are also generally linearly equivalent, i.e.

Moreover, if f is invertible, then f-1 is generally 
linearly equivalent to f.

A 0
C Bg(x) = Bf(A-1x) + CA-1x ⇔ G =            F

F-1 =           F0 I
I 0



Generalized Linear Equivalence (4)Generalized Linear Equivalence (4)

The most general relation between two G.L.E. 
functions is:

In this case, the truth-table of g is given by 
the following non-trivial relation, provided that 
Ax + Df(x) is a permutation function of x.

A D
C BG =            F

g : Ax + Df(x) ⇒ Cx + Bf(x)



Cryptographic Robustness (1)Cryptographic Robustness (1)

The cryptographic robustness of a function 
versus linear and differential analyses is 
invariant under classical linear equivalence 
transformations.
Also, it is invariant under the operation of 
inversion.
Can we extend this invariance to generally 
equivalent functions?



Cryptographic Robustness (2)Cryptographic Robustness (2)

Theorem: the distributions of DDT and LAT 
values for two G.L.E. functions are identical.
The proof is easy; in the DDT of f, every cell 
contains the number of couples (a,b) such 
that b-a=δ1 and f(b)-f(a)=δ2.
If we join the two differentials (δ1|δ2)=∆, then 
the cell contains the number of couples (A,B) 
of vectors of the implicit embedding for which:

B-A= ∆ A=(a|f(a)), B=(b|f(b))



Cryptographic Robustness (3)Cryptographic Robustness (3)

If g is G.L.E. to f, then the linear invertible 
transformation T is applied to all the vectors 
of F, i.e.:

Thus, the number contained in the DDT cell 
of f associated with ∆ will be contained in the 
DDT cell of g associated with T∆.
The LAT proof is similar.

A’=TA, B’=TB    ⇒ B’-A’= ∆’=T∆



Cryptographic Robustness (4)Cryptographic Robustness (4)

The main difference is that while a classical 
linear transformation rearranges the rows and 
the columns of the DDTs and LATs, the 
G.L.E. transformations induce linear 
rearrangements of the cells in the tables.
The one-one correspondence between the 
cells of f and g is guaranteed by the non-
singularity of matrix T.
If the operation is inversion, the tables are 
merely transposed.



Cryptographic Robustness (5)Cryptographic Robustness (5)

The fact that the distribution of values inside 
the DDTs and LATs of two G.L.E. functions 
are equal can be used as a necessary 
condition by algorithms that check for linear 
equivalence.
If the distribution differ, it can be immediately 
concluded that the functions are not G.L.E. 
and they are not linearly equivalent as well.
However, to give a positive answer, optimized 
algorithms are needed (further research).



APN functions (1)APN functions (1)

Perfect nonlinear functions are characterized 
by the highest robustness versus differential 
cryptanalysis.
In even characteristic, only Almost-Perfect-
Nonlinear (APN) functions exist, since the 
smallest possible global maximum inside the 
DDT is 2.
The only known APN functions are power 
monomials of certain kind (see Dobbertin). 



APN functions (2)APN functions (2)

The G.L.E. can be used to find APN functions 
that are not classically equivalent to power 
monomials.
Unfortunately, there is a mistake in the paper: 
the method used in example 2 is correct, but 
the function presented is not. We apologize!
The “addendum” paper contains the correct 
example that follows; it will be soon made 
available on the Cryptology e-print archive.



APN functions (3)APN functions (3)

The power monomial x3 is always APN over 
GF(2n) [Gold case]. Moreover, if n is odd, the 
following is always a permutation polynomial:

This fact can be used to construct a function 
which is generally, but not classically, 
equivalent to x3. The squaring operation is 
linear on GF(2n), thus governed by matrix S.
Let us consider the finite field GF(25).

P(x) = x3 + x2 + x



APN functions (4)APN functions (4)

Function g is G.L.E. to x3 and thus is APN.
Its truth table is described by the relation:

Lagrange interpolation leads to the explicit 
form:

I+S
I 0

I=
x
x3

y
g(y)

g: x3 + x2 + x ⇒ x

g(x) = x21 + x20 + x17 + x16 + x5 + x4 + x



APN functions (5)APN functions (5)

g(x) cannot be 
obtained 
classically from x3, 
since only x17 can 
be linearly 
obtained as (x3)16. 
All other terms 
belong to different 
cosets. 

Cyclotomic classification of 
power monomials over GF(25) 

C0={ 0}
C1={ 1, 2, 4, 8, 16}
C3={ 3, 6, 12, 24, 17}
C5={ 5, 10, 20, 9, 18}
C7={ 7, 14, 28, 25, 19}
C11={ 11, 22, 13, 26, 21}
C15={ 15, 30, 29, 27, 23}



APN functions (6)APN functions (6)

g(x) defined over 
GF(23) gives:

g(x)= x5 + x4 + x

which is classically 
linearly equivalent 
to x3. Error in ex.2! 
See “addendum” 
paper. 

Cyclotomic classification of 
power monomials over GF(23) 

C0={ 0}
C1={ 1, 2, 4}
C3={ 3, 6, 5}



APN functions (7)APN functions (7)

Function g defined over GF(27) is:

The method provides actually a family of 
previously unknown APN permutations.
Other families may be obtainable using different 
permutation polynomials.
Further research needed.

g(x) = x85 + x84 + x81 + x80 +
+ x69 + x68 + x65 + x64 +
+ x21 + x20 + x17 + x16 + 
+ x5 + x4 + x



ConclusionsConclusions

We have introduced an extension of the 
concept of functional linear equivalence.
Known cases become special instances of 
G.L.E.
The cryptographic robustness is invariant 
under the analyzed transformations.
We have discovered a family of unknown 
APN permutations over GF(2n), n odd.
www.macchetti.name
Thank you for the attention!
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